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Abstract

The equations of motion of a ship constrained to oscillate in
heave, pitch, and roll, while moving ahead with a uniform velocity
in obiiqpa waves are studied. It is shown that because of the non-
linear static coupling which is known to exist between thege degrees
of freedom, the rolling response can become large when tha period of
wave encounter is in the neighborhood of one half the natural rolling
period. 1In this case the response has a period which is equal to
twice the pcriod of the excitation, and which, as a consequence, is
nearly equal to the natural period.
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st of ols

» displacements of ship along x, y, z-axes (surge,

sway and hgavg).

= rotations about x, y, z-axis (zroll, pitch and

yaw) .

component of ship velocity along x-axes.
mass momentg§ of inertia about x, y-axes.
components of moment along x, y-axes.

component of force along z-axis.

» wave height.

ship length.

» wave length.

frequency of wave encounter.
heading of ship with respect to direction of

wave travel.

 fraction of critical damping.

Dots denote time differentiation.



- . In-the study of ship motions, as in the study of the motion of

;.}lﬁifiigid body, two approaches are generally used to refine the
.311n¢at theory: One may introduce refinements in the terms already
:}nppcaztng in the linearized equations of motion (e.g. added mass

.‘fﬁand dl-ping terms) or one may introduce highor order terms into the

Lf cqndtionl. It 1s the latter approach which 1s adopted in this paper.

. '”““3h._nonlinoar terms retained in the equations of motion are,

v iolt part, the same second order static coupling terms

*td by ‘Paulling and loacnborg [1] » Kinney (2, 5], and Hsu [3,4].

:A; Th¢~differcnco between the investigation preaented here and the ones

i‘.julc citod 1s that here we consider the ship free to ocscillate simul-

‘ tancou‘ly in the degrees of freedom of heave, pitch, and roll while

f,.gv*nzmahond with uniform velocity in oblique waves, and include the
‘ iéf&ifwdf second order damping in roll. It is showm that when the

‘ ffoqundcy of wave encounter is in the neighborhood of twice the

. natural rolling frequency, the roll amplitude may tend to become
larln, and the rolling response may exhibit a period equal to twice
_  thb period of the excitation, which, as a consequence, is nearly
‘_ 0qu(ifto the natural period.

'Ruib‘rl in brackets designats References at end of paper.



1, Equations of Motion

Here, we shall derive the equations of motion of a rigid ship
executing motions about its equilibrium position. The purpose of
this discussion is two-fold:

(a) To state clearly, and to justify, all assumptions considered

necessary to render the problem tractable, and

(b) To demonstrate in what way all earlier analyses [1,2,3,4,5)

constitute special cases of this paper.

The coordinate axes are the xyz-triad whose origin coincides
with the mass center of the ship. The x-axis lies in the fore-and-
aft plane of symmetry of the ship; it is parallel to the design
water plane of the ship and is positive forward. The y-axis is posi-
tive to starboard, its eleveation being such that the xy-plane is
parallel to the design water plane. The z-axis is orthogonal to the
x and y-axes, and is positive downward. The six degrees of freedom
of the ship consist of translations parallel to the xyz-axes, and
rotations about them. The translations will be denoted by x,y,z
respectively, and the rotations by: ¢ about the x-axis, © about
the y-axis, and \P about the z-axis. The translations are positive
in the positive directions of the axes, and the rotations are posi-
tive in accordance with the right-hand rule. All coordinates are

gero in the equilibrium position.

Assumption A:
The ship is rigidly constrained in sway and yaw, i.e. sjz‘\f’= o,
and the surging motion is prescribed to be uniform.

Justification:

'The above assumption is made because it is the explicit purpose
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of this analyeis to examine only motion in the remaining

degrees of freedom.

_Assumption B:

The xyz-axes are principal axes of the ship.
Justification:
Ships to be considered here possess athwartship symmmetry and
nearly fore-and-aft symmetry. The deviation from the latter
is so small that this assumption i8s considered justifiecd.
Under Assumptions A and B, the equations of motion are those
in heave, pitch, and roll; they are
] Zz
SRS A 5 = M (1.1)

___Jr¢_ K S

where m is the mass of the ship, Iy and Ix are the mass moments of

inertia about the y and x-axes respectively, and ? ) ﬁ , and K
are the external forces or moments in heave, pitch, and roll
respectively.
As tion C:
Z. ’ ﬁ , and E are, in the neighborhood of the equilibrium
position, analytic functions of the displacements ‘5 %, 9 ’
the velocities 5 » B s O, and the accelerations 3 &
Justification:
If Assumption C were violated, linear analysis about the equi-
1ibrium would be inadmissable.
Thus, the right-hand sides of (1.1) may be represented by a general

expression

=C—Q3<’a,¢se)§,¢)é)‘$>%6)



where “6'32 ,az'ﬂ )-Q-,-E , and since the coordinates vanish in the
equilibrium position,

53(010)0)0)0,0,0)0‘03=0

Moreover, in view of Assumption C, every Q J' may be expanded in a

Taylor's series about the equilibrium position.

Assumption D:

The Taylor's series expansion of the ()

j will include only
terms up to and including second order.

Justification:
It is the explicit purpose of this analysis to examine certain
second order effects.

Writing temporarily - g\:a y %" 6 >53'¢ , the terms on the

right-hand side of (1.1) become
Z( E; S at.. 3
3 (34 , o8
L 2 Qi . E + ) 3
+Z dZ| %_.(éﬁjéﬁt L3 SE BEK " (1.2)

T
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%, BL agagt"s‘
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"oy,

3«’

A . 1-_
+a3_,. é“ gs _Eﬁs; L § g‘\
. gl 'g
wvhere the partial derivatives are evaluated at the equilibrium
position.



Assumption E:
All second order terms in (1.2) involving velocities and
L .
accelerations (except for the term 2 Qa 2 ) will be
3%, 38,

- df scarded.
Justification:
This assumption is dictated largely by the lack of knowledge
of the magnitude of the ignored derivatives. The only term
retained here is the second order damping effect in roll; its
physical meaning is clear, its magnitude can easily be deter-
mined, and its effect is considered significant. There are,
however, other rational reasons for this assumption. Since the
present analysis is a refinement on linear analysis, one may
safely assume that the primary effects of velocity and accel-
eration on the motion are included by retaining the first order
terms in these quantities. Moreoever, this analysis is comn-
cerned with the effect of static coupling on the stability of
the motion, and the discarded terms do not represent static
coupling.
Under all assumptions listed here, the equations of motion
become . . . . .
3: 2‘}"3+Z¢ @ +2,0 +Z§ e +Z,¢¢ +Z$34’Zy9
+2, 7;'54-2'-3 Y4z Z”¢"+-'2-3~91'+Zu7,9 (1.3)
+2 ¢'$¢+Z-”¢9
=M,0+M 3+M¢¢+M59+M%S+M ¢*Mg’b
M3¢*E Moo "?.Mv.—2 'LM ¢1+M’40’°9

+M 36 + M%‘H’ .

(1.4)



B = Ky + K;'O*Koe"'(#:’“'sa‘.’sm +K.}7‘b+kée
+Ké.é°+l<.$'5'+-'-2 1<”¢‘+gl<”e‘+§/<“}t (1.5)
+K¢o¢0 + K’3¢} +K‘b9'b .

vhere the subscripts denote partial differentiation, where

__ 2y : -._ M te.
ZB - M-;i )QTC Ms I%-a'.‘ )e c

K
Ky 3~ o :
Sk wenshbi

(1.6)

{717 and where in (1.5) the term Koo %" which would normally appear in

the Taylor's expansion has bean replaced by K‘-' alfﬁl . The
reason for this is that physjcally the term represents a damping
moment and therefore should change sign with the velocity.

The equations (1.3), (1.4), and (1.5) simplify considerably
when the athwartship symmetry of the ship is utilized. In particular

Z¢=Z}-Z’,; =zs¢- z¢‘- qQ

K‘=K"K%=Ké =K%'K‘o’ Kpp' KGOSK%".KG;O
so that the equations of motion become
5=255+Z$5+?66+26é+285 (1.7)

12, P i 2003 2, @0 E, 30
6= M06+M‘.9'+M,‘16+74%73+M.%5
Y CO 2
AL VR LNCES LT LS

(1.8)



P =K, P+ KypeK ploleK dy+K, 26 (1.9)

Next we propose

Assumptjon F: Z%8= M96= o)

Justifjication:

It can readily be shown numerically that the linear terms z.b%
and MG 6 account adequately for the heaving force due to
heaving, and the rolling moment due to roll. Moreoever, the
second order terms in this assumption do not represent static
coupling between degrees of freedom.
Assumption G:
The effect of a seaway on the motion will be taken into account
by adding terms Z2(t) , M(t) , and K(¢t) , respectively to
the equations of motion.
Juptification:
The waves are considered as known functions of time, and the
effect of the ship itself on the seaway is considered negligible.
Under Assumptions A to G, the equations of motion. become
%=23$+Z%5+296+29-6 +Zé.6 (1.10)
+gz”¢l+‘i,_-z“e"+zyvbe+z<ﬁ)

8 =M99+M69+M,675+M%5D+M% 3y

. . (1.11)
s M T g M e M, 36+ M(t)

B =Ky Pty iy #1PI K Ph 15,40+ KO. e



Not all of the partial derivatives in the equations of motion are
independent. In fact they satisfy the following relationships [1,2]

Z,=F ., Zy=Fy, Z=R,, I =R,

M;f Z}e ) M#= Koo -
Equations (1.10), (1.11), and (1.12), together with (1.13) are those

(1.13)

on which all future development is based.
Below, we examine the relation between these equations of

motion and those of earlier analyses. All contained

Assumption A': zee: Z'# - H’ais ﬁ¢¢ = E# =0

Under this assumption the stability analysis of the motion is
reduced to the discussion of Mathieu equations which can be decoupled.
The equations of Hsu [3] emerge by considering the ship as

symnatric fore-and-aft, or

Asgyamption B': ?9 =Z-9. = ?"=z}9= M-3=ﬁ§=

*)
My =R, =R#y=0
and that the waves have sinusoidal shape and travel with uniform
velocity, or
Assymption C': Z2() =2, 00 wt
where () 1is the frequency of wave encounter.

In that case one finds Hsu's [3] equations

;b.*'ca,;b"'w; y = 2o, COS wt (1.14)
. . . ‘

9+C99 +u.)°6-M39189- Me_osm u)t (1.15)
. . r 8

¢¢c¢¢+w¢—l<¢a¢% =0 (1.16)

where use has been made of the notation



Czs—i% N C¢8—K¢ N Ce_-__Mé (1.17)
*_ _ l-’_ 1=_ .
wp=-Z, , wg=-K,, wy=-M, (1.18)

Hsu's equation [4] are obtained by admitting as the only degrees
of freedom those of heave and pitch, or
" . . « = [0 2 3 . =
Assumption B" : 33'29'20 -ZO:M.aM,.BzM,t-M‘b fo)

and by assuming a calm sea, or

Assumption C7: Z@)= M= 0.

In that case one finds [4]

..az +Z é
5735 %50 (1.19)
6 = Mee+M,‘e:be

If one also proposes

Assumption D': z,b =M,

Hsu shows that the solutions of (1.19) are always unstable.

If one admits only the degrees of freedom of pitch and roll
and includes linear damping in roll, but no damping in pitch, one
has

Agsumption B'': 3=M; =MBO =K@®Y=0

.and the equations of motion are those examined by Kinney [5]. They

are .
) =Moe
(1.20)
Bk prkyg+k, 36



ket
W 0

If all demping is ignored, and any two of the thres degrees of
freedom of heave, pitch, and roll are admitted, one finds the
equations of Paulling and Rosenberg [1] for

- Heave-Roll: v . 2
5% %3 %
. (1.21)
‘Pitch-Roll: 8 - Me 6
é’s=l<¢¢+ i<¢e¢6 (1.22)
Heave-Pitch:

'3 = 2},725+ 2’59736
B = M.+ Mie ¥0 (1.23)
These last three pairs of equations [1l] are those which have
initiated this study of the nonlinear static coupling effects on the

stability of ship motions.
To complete this discussion we shall present below a brief

sumnary of the results of the earlier analyses [1,2,3,4,5]. We will

"show that all the equations of motion considered in these analyses

can be reduced to the standard form of Mathieu's equation, the
stability of which can be discussed in a straight forward manner.
We will therefore begin by giving a brief discussion of Mathieu's
equation.
The standard form of the Mathieu equation with damping is
dy
dxx

where K, and & are three arbitrary parameters.

d _
"ZKZ';? +(?>+ecosx\%—o (1.24)
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The stability of a solution y=y(x) can be deduced from the
Ince-Strutt chart which consists of a series of curves H=%(¢), which
divide the Sé -plane into stable and unstable regions. For values
of & and &€ which define a point inside of, or on the boundary of
an unstable region, the solution is unstable. Figure 1 shows an
approximation of the curves defining the boundary between the stable
and unstable regions for K = 0, due to Stoker [6], which is adequate
for moderate values of &

For k 3% (0 the equation of the boundary curves between the
stable and unstable regions near 8 = 1/4 have been given in [5]

for small values of € . It 182
I 5 (1-4)-85[1-3 8% § 1-¥)41-5€=0 (1.25)

where ‘s is the fraction of critical damping and is plotted in
Figure 2.

For a more detailed discuesion of the solutions to Mathieu's
equations the reader is referred to McLachlan [7].

We shall now examine the stability of the solutions of the

equations of motion presented above.

r'l'he standard form of Mathieu's equation in [5] is %"-HZ‘K%'.S:(E-Q%@@ZQ\

90 -7 instead of (1.24) so that the equation of the boundary
curve presented there is in terms of & and % . The conversion
to § and € 1is self-evident.



STABLE -
REGIONS
SHADED \ N
\— \
| |- \
ry \
2 A\

2
_1. D€
8-14——l2

FIG. | STOKER'S APPROXIMATION OF STABLE AND
UNSTABLE REGIONS FOR THE MATHIEU

EQUATION
0.15
¥ =FRACTION OF
CRITICAL DAMPING
o }\\ //
€ \ 006 / /
0.05 % /
d\\/
N7,
0
0.20 0.25 0.30

8

FIG.2 THE EFFECT OF DAMPING ON THE 8€ PLANE



-13-

The equations (1.14), (1.15),and (1.16) of Hsu [3] may be put
in standard form as follows: Equation (1.14) can be easily inte-

grated, giving

73=A5 oS (wt—d,,o) (1.26)

where

' _CywW (1.27)

A ZCO ) dz =+&;\
wg._ LOL

¥ {(e ™ (Wi-w

Substitution of (1.26) into (1.15) and (1.16) yields

. . _
¢+c¢¢+[w,-K%A,Bcos(wt-o\Q]cys-o .25

6 +C, 0 + [wy- Mea,A’a%s (Wt-0)] 6 =M sin o5C
which, in terms of a new time variable T defined by T_=wt -d'ﬁ ,

may be written as

d's de
+2K +(%,+€ cosT)p =0

d1? #dT ® & (1.29)

d%6 6 = Meo .

de +2K93LE*<59+&9°“C)9 = or STy
where
N

c ) __ Kgz A 1.30
R e

¢ _ wa _ My A
2Ky= =&, by T2 &y =-—HAS- (13D

Both equations (1.29) are in standard form except for the inhomogeneous
term on the right hand side of the equation for § . However, as

Hsu points out in [3], for such an equation in which the inhomogeneous



term is harmonic with a frequency equal to that of the periodic co-
efficient appearing in the equation, the necessary and sufficient
condition that solutions be stable (unstable) is that the solutions
to the corresponding homogeneous equation be stable (unstable). For
a detailed discussion of this see [8].

We are therefore led to

Result I: Under the assumptions leading to equations (1.14), (1.15),
and (1.16), the stability of the pitching and rolling
motions of a ship moving forward with uniform velocity
in longitudinal waves is determined by the positions of
the pair of points ( 8¢ , é'¢ ) and (26 , ee ) in the
Ince-Strutt chart, where 8¢ ’ é¢ , 56 , and ée are
given by (1.20) and (1.30). Instabilities are most
likely to occur when E)¢ is near 1/4.

A detailed analysis of the stability of the solutions of
equations (1.19) is too lengthy to be included here. Hence we shall
only sketch the method used by Hsu [4] and state the result.

By denoting the solutions of (1.19) by B*({') and § @) and by
introducing perturbations of these solutions, denoted by X, and Xz
respectively, one arrives at the equations of the first variation
with respect to 5*(4:) and 8%(4) . By further assuming that -ZB-—MG-
= )" and that T"4) and 8"4) may be approximated with sufficient
accu;:acy by g(t\=z"° cos St and 6*(0=6060s wt , these variational
equations take the form of a set of two coupled Mathieu equations.
Hsu then shows that by introducing new variables 3\ and 5 . related

to X, and X, by the linear transformation



3 = M},e X - Z},e X,

3,6k +2, Xy

these equations decouple into two Mathieu equations, the solutions

of which are always unstable. The conclusion is

Result II: Under the assumptions leading to equation (1.19), the
heaving and pitching motion executed by a ship in calm
water are always unstable.

We now turn to equations (1.20). Introducing the notation

M 8= Wy I<¢ = o.)¢
they can be written as
é + u);' 6=0
(1.32)

(3] L3 1-

P-KyPp+iyd-K, #6=0.
The first of (1.32) can be integrated to give 6=,cosits®) where &,
and @ are constants of integration and, without loss of generality,
we may set Q =0 . Substituting the resulting expression for e

into the second of (1.32) gives the Mathieu equation

S lt 1.33
—K¢¢+(w¢-ﬁ<¢99°coswe£\¢-o (1.33)

which can be put into standard form by the change of independent
variable defined by ‘(,.-.-o.)e‘t . The result is

d"$+2l<“ +(§, +&,c0sTI)P=0

ac o)
where
_-K; S = W ¢, = _Kggbo (1.36)
2K = :,':' ) Yy # i



We are therefore led to

Result II]: Under the assumptions leading to equation (1.20) the
stability of the rolling motion of a ship oscillating
in pitch and roll in calm water is determined by the

?:'%Fﬁ-ff':i‘:‘&"%“f?”.‘i;’s*“’;“ o position of the point ( § @ & & ) 1in the Ince-Strutt
chart where %¢ and é¢ are given by (1.34). Insta-
bilities are most likely to occur when co’é is near 1/4.

Equation (1.23) has, in effect, already been discussed since it
is identical with (1.19), and the discussion of (1.21) and (1.22)
proceeds in a manner similar to that for (1.20), the only difference
being the absence of damping terms in the former. This then com-
pletes the discussion and we return to equations (1.10) (1.11l) and
(1.12), the integration of which is the main subject of this paper.

Equations (1.10), (1.11), and (1.12) constitute a set of three

i nonlinear, coupled, second order differential equations, and con-

sidering the present status of knowledge concerning such equations,
1t is impossible to find their general solutions by analytical means.
Therefore, particular solutions will be obtained by means of an
electronic analogue computer under the conditions that the ship is
initially at rest. However, before proceeding to that phase of the
study it will be advantageous to gain some insight into the problem
by making some simplifying assumptions in the equations of motion
and proceeding analytically as far as possible, just as was done in
all preceeding analyses. We will show that under such assumptions
the equations of motion for pitch and roll reduce to the form of
inhomogeneous Mathieu equations, the stability theory of which is

well established. It should be stressed, however, that is is not
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our intention to test the validity of these assumptions by means of
the analogue simulation which is described later. 1Instead, the
-analylis which follows i8 only intended to aid the analogue compu-
tation by indicating if and under what conditions instabilities may

be expected.
8 fied Analysis Based on Mathieu's Equation.

A great simplification in the equations of motion occurs when

the ship is assumed to be symmetrical fore and aft. Under this

assumption _ _
= =—=— =0
226 Mﬁ Z Ze 2’é
Moy =Rag =M, = Ms =My
and oquationo (1.10) through (1. 12) become
'75 '2.57b+2'§,;b+12- i¢¢¢a'+2'- 2“91-0— 2(¢) (2.1)
6 =M,6+M;6+ M 1630+ MWD (2.2)
@ =K ¢+K¢¢+ sa P12 + ¢%¢5+k(t\ (2.3)

Moreover, we neglect the terms *h&‘ and *!“ 61 in (2.1)
for the following reason: MBuppose that the pitching and rolling
motions are known functions of time and it is required to find '8 ‘
Substituting these known functions for g8 and § into (2.1) would
make the terms ii”¢" and 43, 6" known funotions of time
vhich could then be combined with Z(t) , the result being, as far
as 'ﬁ is concerned, a modification in the external excitation, and
it 48 not likely that such a modification would greatly alter the
phenomenon. Note, however, that a similar argument could not be
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used to neglect the terms M'jbzbe and K¢3¢% in (2.2) and (2.3).
For suppose 3 is a known function of time and it is required to

solve for @ and § . Substituting this known function for y into
(2.2) and (2.3) would have the effect of introducing time dependent
coefficients into the equations, which in turn would greatly alter
the character of the solutions.

For this analysis we will also disregard the nonlinear damping
factor in roll. With these simplifications then (2.1) through (2.3)

become
4eCy gm); 3 =2(4) (2.4)
b~+co§+(w;--r4$a%)e =M®) (2.5)
P+C, P +(u);—l<¢s75\¢= KL (2.§)
where we have put
C}f*zib ) Cp=-My, Cq=—Ky
Wy =-2, wy =-My | g = - Ky

to conform with the usual notation used in the theory of vibrations.
Assuming sinusoidal waves, the external excitation terms Z‘(t) ,

M(f) , and K(f‘) may be written in the form

Z)=2,cos wt + 2,8 T (2.7)
MEY=M, cos wt + M, sin wt (2.8)
K@)= K, cos wt + K, sin wit (2.9)
or
(2.10)

Z@)= 2,605 (wt+‘8,63
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Mit)= Mocos(wt+x93 (2.11)

K@®) =Kqcos (wt+ty) (2.12)

where ¢) 1is the circular frequency of wave encounter which depends
on the geometry of the waves, the heading of the ship with respect
to the direction of wave travel, and the speed of the ship. When

(2.10) is substituted into (2.4) it can be solved for 7?‘ » giving

5= Aycon (wh +dy) (2.13)
where

Z R C
3y (csw)+(w D s d% t -¥) v = Wy =

Now (2.13) together with (2.11) and (2.12) may be substituted into
(2.5) and (2.6) yielding the inhomogeneous Mathieu equations

64,6+ [y =M, A cos atiay]o =M coswtey) (2.14)

B[l -Ryhesatradp = kwoalatiy) @1
These can be put into standard form by the change in time scale de-
fined by ‘C:w‘t}o( . The result is

3—;—L+2k9“ +(Qy+€quntlO= l‘h@scr dyt Bp) (2.16)
3—% kﬂ‘:t +($¢ +€ cosﬂ¢-&ms(f-da+t¢} (2.17)
where .
.ke=§-&>—> 59':3‘:_, éé"“%‘é‘l‘"
(2.18)
=k bo = E ) egx-Kaphy

Inhomogeneous Mathieu equations such as these where the inhomo-

geneous term has the same frequency as the periodic coefficient
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appearing in the equation have already been discussed above. There
it was stated that the stability of solutions of such equations is
the same as the stability of the solutions of the corresponding
homogeneous equations, the stability chart of which is given in Fig-
ures 1 and 2. From it we conclude that for large values of damping,
unstable solutions are not likely to occur. On the other hand, for
small values of damping, unstable solutions are most likely to occur
when § 1s in the neighborhood of 1/4 and 1. Since damping in pitch
is of the order of 50% of critical, it is not likely that unstable
pitching motion will occur. However, since damping in roll is only
of the order of 5% of critical (assuming no artificial devices such
as bilge keels are used), based on the above remarks we might expect
large roll angles for values of () near 2co¢ and Wy

With this background we are now in a better position to investi-
gate the solutions of (1.10) through (1.12) on the analogue computer.
However, before we can perform the simulation we must choose definite
values for the coefficients appearing in the equations, which is the

subject of the next section.

3. Determination of Coefficients.

Since it would *re prohibitive to examine solutions of (1.10)
through (1.12) for a variety of ship forms, we shall, for concrete-
ness, adopt the parent form of the Series 60, Cg = 0.60, 5' ship
model. Many of the coefficients appearing in these equations may
be found from the lines drawing of the model, the values of which

are given on the next page.
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- - : - A

z#:'(*b: ST K#=-n.n b=t
2, =-147 . M= ~189 1b-s+,

2y=M.=-14.7 lb. M, ,= 2y =634 Ib

T aM =- Iy M =K =-

2'59 Mu 240 /4, M, IZ” 8.07 lp-4t.

The calculations leading to these values may be found in the Appendix.
The remaining coefficients are known to depend on the speed and fre-
quency of oscillation of the model, and curves for determining these
terms may be found in [9]. However, for mathematical convenience

we will take these coefficients as constants equal to a value within

their range of variation. In this manner we find

”"‘Eg =185 brseelft 1\3—-77\..=2.7_ lo- - sec™
§%=-e.s lo-secq, My=-5.7 lb-bt-sac
2, =4.3 lb-sec. F4;°= -1 lb-sec.
Z,. =0 Fﬂ'%s:— o)

Curves were not readily available for the determination of the
apparent mass moment of inertia and damping coefficients appearing
in the rolling equation of motion. Concerning the former, however,
a value has been found experimentally for this model (See [5]) for
rolling in calm water. It is

I -K. =0.0454 ig_‘f¢’+; et
x



and will be used here.

Concerning the latter, we will take values

for the damping coefficients equal to those obtained from the '"curve

of extinction' as outlined in [10] using a free oscillation record

of the rolling motion in calm water obtained experimentally (See [5]).

We thus find

K.=-0.0158 Ib-ft-sece

)

)

Using these values, we then find from (1.6)

2, =-19. 2
-5 794 sec

Z-B- -3.51 sec

2,=-1.95 Ha

Z;=2.32 e

o L Fhe
2‘2¢¢ 3,0

% Zooz =171 “écc:"

Z =<130 gec?
e

:

I
M%=-O..S' q90 ’-f+-s¢c.
! -1
5 M¢¢8 -1.83 sec

| Yea *
7 M%B- ~-54.6 ’ﬁ-wc_

' h
Msa' -288 Tt-gec™

E, =-0.0342 |b-ft-sec®
S

q -2
‘-i |. e

-1

_ Uit
K¢5—- 244 “St-cect

-2

K

o™ -177

The only terms remaining unspecified are the terms representing

the external excitation.

For a given model they will depend, in

general, on the geometry of the waves and the heading of the model

with respect to the direction of wave travel, denoted here by ol .

We shall measure <{ 1in such a way that ol=0O corresponds to head

seas, (= 90° corresponds to waves coming from the starboatd beam,

and o = 180° corresponds to following seas.
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From the simplified analysis based on Mathieu's equation we may
expect that for a given wave length, A , and model heading, o ,
there will be certain values of () , or equivalently, certain values
of the models speed, L , for which the rolling motion will be un-
stable. We shall seek to determine this speed range for the following
thrse cases: (i).A is taken equal to L, the model length, and
X assumes the values 15°, 30°, 45°, 60°, 75°, 105°, 120°, 135°,
150°, 165%; (i11) )\ 1is taken equal to 1.5 L and o assumes the
values 15%, 45°, 75°, 105°, 135°, 165°; (111) A\ 1is taken equal to
0.75 L and ©O( assumes the same values as in case (ii). 1In all
cases the wave height, 2A, is taken equal to ‘*/40.

The external heaving force and rolling and pitching moments
produced by the waves were computed using the Froude-Krylov theory
in conjunction with the ''long wave approximation."” The formulas used
for these computations are presented in the Appendix and the values
obtained are given in Table I. However, before these values may be
substituted in (2.7) through (2.9) they must be divided by the
apparent mass of the model in the case of heaving and the corre-
sponding apparent mass moments of inertia in the case of pitching
and rolling.

Using the above values for the coefficients the equations of
motion (1.10) through (1.12) become

{=-144 33513 -3.0 B~ 171 87130 3,6 (3.1)
-7.95° 8 +2,32 8+ conust + 2, st

5 =-86.06-2.59 b-288 30 -1.83g-54.63" (3.2)
6,68 % -0.590 3+ M, coswtsM et

F=-244 B -0348 F-0754¢|$|-2448 % (3.3)

-177¢84+K, cos wt K 8\ wt



o = 15°;

A = 30°;

ol = 45°

ol = 75°

ol =105°

of =120°

A =135°

ol =150°

ol =165°
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Table I.

Case (1): A =L , 2A = )‘/40

0.0172 1b-ft.
0.0122 "

0.0350 1b-ft.
0.0230 "

0.0535 1b-ft.
0.0324 "

0.0685 1b-ft.
0.0326 "

0.0825 1b-ft.
0.0243 "

0.0825 1b-ft.
-0.0243 "

0.0685 1b-ft.
-0.0326 "

0.0535 1b-ft.
-0.0324 "

0.0350 1b-ft.
-0.0230 "

0.0172 1b-ft.
-0.0122 "

M-| -
My

3 X
Nl [

k<
L }

4.95 lb-fto
0.437 "

5.25 1b-ft.
0.333 "

5.25 1b-ft.
0.056 "

4.48 lb-ft.
-0.460 "

3.02 1b-ft.
-0.830 "

-3.02 1b-ft.
-0.830 "

-4.48 1b-ft.
-0.460 "

-5.25 lb-ft,
0.056 "

-5.25 1b-ft.
0.333 "

-4.95 1b-ft.
0.437 "

Z,=--1.99 "

= 0.610 1b.

g, = 0.590 1b.

2.~ -2.55

?o'
2.~

- 0.555 1
= - 4.95

I i

Ll
)

-5.95

N
&

-0.374
-5.95

NN
‘|

N
-

-0.555
l- ‘4.95

el

»m -0.615
-3.64

=0.590
-2.55

-0.610
-1.99

"

0.615 1b.

-3.64 "

b.

1"

0.374 1b.

1b.

1b.

1b.

1b.

1b.



ol = 15°;

A= 30°:

oA = 45°

A = 75°

ol =105°

ol =120°

A =135°

ol =150°

o =165°

Table I.

Case (1): A=l , 24 = A/40

0.0172 1b-ft.
0.0122 "

0.0350
0.0230 "

0.0535
0.0324 "

0.0685 1b-ft.
0.0326 "

0.0825 1b-ftc.
0.0243 "

0.0825 1b-ft.
-0.0243 "

0.0685 1b-ft.
-0.0326

0.0535 1b-ft.
-0.0324 "

0.0350 1b-ftc.
-0.0230 "

0.0172 1b-ft.
-0.0122 "

X X

x Xl
~ -
[

x X
Nl [ ]

X
N
[ ] [ ]

= XX
)

< X|

4.95 1b-ft.
0.437 "

5.25 1b-ft.
0.333 "

5.25 lb-ft.
0.056 "

4.48 1b-ft.
-0.460 "

3.02 1b-ft.
-0.830 "

-3.02 1b-ft.
-0.830 "

~4.48 1b-ft.
-0.460 "

-5.25 1b-ft.
0.056 "

-5.25 1b-ft.
0.333 "

-4095 lb-ftn
0.437 "

0.610 1b.
-1.99 "

0.590 1b.
-2.55 "

0.615 1b.
-3.64 "

0.555 1b.
-4.95"

0.374 1b.
-5095 "

-0.374 1b.

. -5 .95 "

-0.555 1b.
-4095 "

-0.615 1b.
"3.6“ "

«0.590 1b.
-2.55 "

-0.610 1b.
-1.99 "



Tadle 1 (Con't)

%_uy_ M= 1.5L, 24 = A/40

ol = 15° 4,- 0,0202 1b-fr. M= 8.48 thege.  Z = 0.913 1.
ﬁ'- ¢.o0121 " M= -0.236 " Z,= -H05 "
oA = 452 g‘- 0.0580 1b-ft. M, = 7.18 1b-ft. Z, = 0.795 1b.
o &,=0.0254 " M,= -0.839 " Z,- -8.77 "
o= 7 K =0.0828 Ib-fr. M= 3.03 b-fr.  Zi= 0,36 Ip.
s . -v— , . .
K= 0.0143 " Mg -1.49 " Z,- <10.8 "
of =105% K, = 0.0828 1b-fr. M= -3.03 lb-fr. 2= -0.334 1b.
‘E,:,. -0.0143 " My= -1.49 " Z,- -10.8 "
oA =135° 10,0580 1b-fe. M, = -7.18 1b-ft. &, = -0.795 1b.
Ba -0.0256 " M,= -0.839 " Z,- -8.77 "
ol =165° E, = 0.0202 1b-ft. M, = -8.48 lb-ft. 2, = -0.913 1b.
Ki= 40.00121 " M,= -0.236 " 2= -7.0% "
v = .
Gaie (111): A= 0.75L, 24 = N40
ol =15°  Kim0.0126 1b-fr. M, = 2.28 1b-ft. 2, = 0.210 Ib.
K,» 9.00906 " M, 0.612 " Z,~ -0.0840 1b.
ol = 45° K =-0.0#78 1b-£r. M = 3.36 lb-fe. Z,= 0.411 1b.
K,='0.0322 " M,= 0.339 " 2, -1.26 "
of = 75° K= 0.0861 1b-£¢. M,= 2.28 1b-ft. 2= 0.308 Ib.
K= 0. nzso W M,= -0.572 " Z=-3.74 "
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Table I (Con't.)

o(=105° W, =0.0861 1b-fc. 4 = -2.28 1b-ft. Z = -0.308 1b.

K~ -0.0260 " M,= -0.572 " Z=-3.76 "
o =19%° K = 0.0472 1b-£t.  M,= -3.36 1b-ft. & = -0.411 1b,
| K,= -0.0322 " Mo 0.339 Z,--1.26 "
oA =165° K,= 0.0126 1b-ft. M, = -2.28 1b-ft. 3= -0.210 1b.
' K~ -0.00906 " M- o0.612 "  F= -0.0840 "
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where use has also been made of (2.7) through (2.9).

Before proceeding to the explanation of the analogus simulation
let us restate the assumptions which have been made in arriving at
values for the various coefficients in the equations of motion.

1. The coefficients of the terms representing hydrodynamic
forces and moments are constants equal to reprssentative values
obtained experimentally.

2. The waves are sinusoidal.

3. The magnitudes of the external forces and moments are ob-
tained from the Froude-Krylov theory in conjunction with the '"long
wave approximation."

All of these assumptions seem justified since it is not our
intention to give a detailed study of the motion of the Series 60,
(o = 0.60 ship model. Rather we are concerned with studying a
basic phenocmenon, and this model has been adopted only to arrive at
realistic, 1if not completely accurate, values for the various terms
appearing in the equations of motionm.

Now that definite values have been chosen for the coefficients
in the equations they may be simulated on the analogue computer,
which is the subject of the next section.

4. M s 1 &

In simulating a problem such as this on the analogus computer
it is necessary that the output of any operational amplifier not
exceed T 100 volts. To satisfy this requirement, it is necessary
tow}ntroduce scale factors between the physical variables and the
machine variables (1.e. voltages)based on the estimated size of the
former. From physical considerations we may state that the largest



value of Iial to be expected is 1A/6 ft., the largest value of |e|
to be expected is 1/5 radian, and the largest value of |@| to be
expected is 2 radians. Thus if we dafilm

Z=6007Y Y=85006 X=8&0 & (4.1)
the machine variables X, Y, and Z will all be less than 100 volts
in absolute value. Substituting (4.1) in (3.1) through (3.3) gives

Z=-1942-35I 2 -0720X*-0.41 Y*-0.260Y2 %.2)

-q.54 Y+ 2.7 Y +b00 2 conwt +62,sinwt

¥ =-86.0Y -2.59Y -0.48 Y2 -0.366 X 0.0758 2* (6.3)

-5.572 —0.492 2 +500 M cnuwt+s00 M, s it

X = -24.4 X-0.348 X-0.0149 X |X|-0.407 X2

: (4.4)
-0.354 XY+ 5o K\c.osw‘t +50K, S\w wt

It 1is also convenient to have the abgolute values of all the co-
efficients in the equations less than 1 which can be accomplished
by a.clungc of time scale defined by

T=lot (4.5)
wvhere | 1is now the machine time and t is real time. After this
change of variable we obtain the final equations

N - /_ 2 04l y2_0.260
Z'2~0,1942-0.35 2 “hgg?x %EY 9-—-“)o Y2

(4.6)
| .
-0.0954 Y+O.Z7HY&62,Cos%T+bazsm1“-g-T
' 366 yZ 3
"=-0.860Y-0.259 Y'-Q;-gg-Q Y2 -2388 x -9;-2-355 2 “n

-0.0557 2 -0.0492 2'+5 M, cos 8 T+ EM, Sin¥T
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/\’"= ~0.244 X -0.0348 X'~ 0.0149 X' | X' = 2407 2

loo
- A54 w ' 4.8
'%bL XY+0.5 KicesET +0.5 K,_sm-%‘r (4.8)

where primes denote differentiation with respect to T.

The simulation of these equations is done in accordance with
the block diagram shown in Figure 3. The triangles represent phase
inverters, the triangles with rectangles along one side represent
summing integrators, the circles on the input sides of the integrators
represent potentiometers, the initial codditiéns (1f any) are ;hown
above the integrators concerned, and the multiplication by a con-
stant performed through each integrator or phase inverter is shown
opposite the corresponding input. The computer used was a Berkeley
Ease (Electronic Analogue Simulating Equipment) electronic analogue
computer manufactured by Berkeley Division of Beckman Instruments,
Inc., and is shown in Figure 4.

The simulation of a complex problem such as this on an analogue
computer presents many oppertunities for making errors, particularly
in making the external connections into the patch bay of the computer,
and since the solutions of equations (3.1) through'(3.3) are not
known, such errors may not be easily detectable. However, these
equations contain equations (2.4) through (2.6) as a special case
which may be recovered by setting certain nonlinear terms equal to
zero. Since the stability of these latter equations is well estab-
lished we may use that theory to check the validity of the simulation.

To do this the patch board was first wired to simulate equations
(3.1) through (3.3) in accordance with the block diagram shown in
Figure 3. Then appropriate coefficients were set equal to zero so
that the resulting simulation was that of equations (2.4) through
(2.6) except now definite values have been assumed for the coefficieﬁts.

We then sought the values of uw) for which the rolling was unstable.
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The case A= L , ol= 45° was chosen for the computation and
sanples cf the 1rolling response obtained for values of W near the
ttability threshold are shown in Figure 5. It can be seen that near
the threshold a small change in (/) produced a large change in the
character of the solution. The unstable solutions showed a sus-
tained growth in amplitude which would have continued indefinitely.

It was found that the rolling motion was unstable for 8.28 W<«
10.S‘whereu the theory predicts unstable rolling for 8.26<w<10.6.
The error in the bounds of the range of (W for which the rolling
was unstable obtained by the computer is less than 1% which seems to
indicate that the basic network was correctly constructed. There-
fore, it seems reasonable to conclude that the network will give
the correct particular integrals of (3.1) through (3.3). The pre-
sentation and discussion of these integrals is the subject of the

next section.

3. Computer Results.

It was found that for the cases where >\- L and )\- 0.75L

. the rolling response had the general appearance shown in Figure 6.

_ It was found that for these two cases there was a range of exciting

frequencies for each value of ol for which the roll amplitude tended
to grow, just as was observed for the solutions of the Mathieu
equation shown in Figure 5. However, because of the second order
damping term in the rolling equation the growth in amplitude did not
continue indefinitely, but instead reached a steady-state value.
Nevertheless, because of the similarity to the solutions of the
Mathieu equation we will term such motion "unstable.” To give some

idea of the rolling amplitudes attained we refer to Figure 7 which
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Stable Solutiom,
w =7.02 rad/sec

= P— 1 sec.

-0.50

-0.25

0.25

0.50

(d) Unstable Solution,
W =7,10 rad/sec

Figure 6 (cont.) Rolling Response for A=L, d-45°, 2A= A/40
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gshows the maximum amplitude as a function of (W and Froude number
for A= 45° and A= L, and for comparison the same curve is
plotted in Figure 8 in which the rolling dﬁplitude was calculated
using linear theory.

Although the rolling response did exﬁibit the instabilities
just described for A=Land A= 0.7Si;,they did not occur at
values of (J predicted by the theory based on the inhomogeneous
Mathieu equation, which is not surprising considering the assumptions
made in that develapment. Instead the unstable regions were found
to be much broader, in general, than those predicted by that theory,
as may be seen by Table 2, which shows the comparison for the
special case A=1L1, 2A = A/40. Nevertheless, as may be seen,
the instabilities did occur for values of‘.u%ﬁfb in the neighborhood
of 1/2 as the theory predicts.

"Por the case where A= 1.5 L the rolling response was found to
be quite different from that obtained for )\ = L and A\ = 0.75 L,
as may be seen by Figures 9 and 10. Because of the very large roll
angles obtained the motions found in this case are very difficult to
interpret physically since the equations of motion are no longer
valid. Nevertheless, the results are interesting since they clearly
show the effect of the nonlinear terms when the displacements are
large.

. The solutions obtained showed, in general, that for each
?Aﬁiiéfné of the model with respect to the direction of wave ?ravel
there were values of () for which the rolling was unstable. The
model's speed corresponding to these values of W was then found

from the following equation
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Table II

= (D (11)
15° 0.486 <2 < 0.535 0.454 < <2 < 0.672
30° 0.476 <22 ¢ 0.562 0.463 < 43 <0.692
45° 0.466 <% < 0.597 . 0.463 <2 < 0.700

w w
60° 0.455 <%<0.630  0.458 <2 < 0.714
75° 0.447 << ¢ 0.653 0.455 < 2% ¢0.700

(1):

(1I1):

Range of ‘0525 for which solutions to the Mathieu

equation (2.6) are unstable.

Range of “49ZJ for which solutions to equation (3.3)

are unstable.

In both cases A =1, 2A = /40,
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(a) Stable Solution,
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(b) Unstable Solution,
w =3.88 rad/sec
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(c) Stable Solution, &J =4.00 rad/sec.

Figure 10 Rolling Response for A=l.5L, ol=1ObO, 2A= MN&0
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| A
= Cos ot (777 w-wW)

where U;; is the velocity of gravity waves given by

The results of the stability study may be found in Figures 11
and 12 which ah%w, for each value of ol , the range of Froude num-
bers for which: the rolling was found to be unstable. For Proude
numbers between 0 and 0.35 it was found that the rolling motion was
always stable for values of ol 2 105° for the cases where )\ =L and
A = 0.75 L, and hence these parts of Figure 1l are omitted.

In addition to the growth in amplitude, the unstable rolling
motions had the unusual characteristic that the period of the steady-
ltqﬁé.:qsponse had a value equal to twice the period of wave encounter,
uﬁiié:cﬁe stable motions had a period equal c& the period of the
external excitation. This is clearly seen in Figure 13 (a) and (b).
In the former the period of wave encounter, T , corresponding to
We 8.8) rad/sec. is 0.711 sec. while from the motion record the
period of roll is found to be 1.4 secs. In the latter, the value
of T corresponding to W = 7.01 rad/sec. is 0.897 secs. while from
the motion record the period is found to be 0.9 sec. Figure 6 (b)
shows an example of a rolling response near the threshold of the un-
stable region where the time between alternate large rolls is again
equal to twice the period of wave encounter. We will have more to

say about this phenomenon in the next section.
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6. Discussion and Conclusions.

We have seen that when the frequency of wave encounter, W , is
in the neighborhood of twice the natural ffequency in roll, 9%6 .
the rolling response has the following two distinctive characteristics:
(1) the amplitude tends to graw to a large but finite value, and (2)
the period of the steady-state responge is equal to twice the period
of the excitation. This behavior cannot emerge from, nor can it be
studied in, a linear analysis. For if p11 £ﬁe nonlinear terms are
neglected, the equation of motion for réll“ls no longer coupled with
those for heave and pitch, and is linear. Ome is .then led to the
conclusions that large roll amplitudes may be expected only when the
exciting frequency is near the natural rolling frequency,igpe reson-
ance condition, and that in any case the frequency of the steady-
state response is equal to the frequency of the excitation. There-
fore, we see that the inclusion of the second order static coupling
terms, which are known to exist, in the equations of motion pro&u;es
a rolling behavior which is in direct donéra&iction to that predicted
by linear theory. However, in this study”yé 4;e dealing only with
solutions to certain differential equationg,.gnd wheth;: or not the
rolling motion of an actual ship movingiin.obiiéue waves would
exhibit such behavior depends upon how well those equations approxi-
mate the true equations of motion, a question which can only be
answered by model experiments.

Some experiments with Series 60 modnls'moving in oblique waves
have recently been performed, the results of which may be foundﬂin
(11) and [12). The results show that in bow seas the roll amplituda

was always of the order of 5° for Froude numbers between O and 0.4,



e A ) ‘\753
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‘uhidh dods not conform with our results shown in Figure 7. However,
'ﬁho iitcrhpuncy may be attributable to two main factors. Pirst of
all, 1n‘dhr1ving the equations of motion &t wes sssumed that all
motions are small in the sense that third oéd:;dtcrnl may be
ncglcétod, and therefore, for such large roll an;l‘ifiﬁa‘validity

of those equations is questionable. It seems lpplgfggc%fil the com-
puter study that within a certain range of Froude nunboro th;htolling
motion may tend to become large, but how laxge is diffi.cult: tcr?uy
at this point. Secondly, the models used in the exporin.ncs deBeribed
in [11] were all equipped with bilge keelo,‘fédiin bbth chdies the
waves used in the experiments were not very severe. (In [11] and {12]
the vlve heights were taken equal to )VSO and A48 tccppctlvoly)

”Thorcforc, it seems likely that the damping in roll was too 1.333

,‘:5conparod to the wave excitation to produce unltable rol!ing.

On the other hand, rolling motions in which the rolionsg_h.d a
period equal to twice the period of wave encounter were obo§£§ed
during the experiments reported in [12], where a recorded rolling
motion is presented (Figure 24 of that plper) that very clocoly re-:
sembles thdt shown in Figure 6 (b) of this paper. In conneccipn
with this, Lewis and Numata state that such rolling motioms wnre
observed when the period of wave encounter was approximatoly one
half the natural period in roll. However, they also point out that
in other cases where the two periods did have this relatianship,
normal records were obtained. No definite explanation for this be-
havior is given there, but based on the computer study\u; are in a
position to offer an explanation. ‘

First of all it is evident from this investigkﬁion that thc

presence of the nonlinear static coupling between heave, pitch and
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roll is sufficient (provided the damping in roll is not too large)
to cause such behavior and that no motions other than these need to
be involved. Secondly, we have found that such behavior is a prop-
erty of an unstable or nearly unstable rolling motion as we have
defined. Now, for unstable rolling to occur it is necessary but

not sufficient, that the frequency of wave encounter be in the neigh-
borhood of twice the natural rolling frequency. Whather or not un-
stable rolling actually occurs depends upon the relative strength of
the excitation compared to the damping in roll. This then explains
why in one case a '"mormal" rolling behavior and in another case an
"abnormal" rolling behavior can be observed even when in both cases
the frequency of wave encounter is in the neighborhood of twice the
natural rolling frequency. If the rolling is unstable, then it
exhibits a period equal to twice the period of wave encounter, which
as a consequence is nearly equal to the_na;ugal period.

To be completely accurate, the "erratié" rolling motion ob-
tained by Lewis and Numata does not satisfy our definition of unstable
rolling since the amplitude is not increaéingiand shows no tendency
to do so and hence the above explanation is not strictly applicable.
In fact it is not quite periodic so it is meaningless to speak of
its period as being twice the period of excitation. However, it
does closely resemble the computer solution shown in Figure 6 (b),
and therefore we may discuss it with reference to that solution.

As may be seen the solution in Figure '6 (b} is classified as
stable but is very near the stability threshold. Furthermore, the
initial portion of the solution is almost periodic, the time between
the alternate large rolls being precisely twice the period of the

excitation. However, this behavior is transient and gradually dies
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‘out leaving a steady state response which is periodic, the period
being esqual to the period of the excitation. The close resemblange
of the above mentioned rolling motion to this solution seems to indi-
cate that what Lewis and Numata actually observed was the transient
pertion of a rolling motion which was very near the stability thresh-
old, the transient being almost periodic with period equal to twice
the period of wave encounter and which as a consequence was nearly
equal to the natural period.

The investigation described in this paper can only be considered
a8 an initial step in the investigstion of the effect of nonlinear
static coupling on the rolling stability of a ship moving in oblique
vaves. However, it does suggest a possible area of study for those

experimentors engaged in the testing of models in waves.



APPENDIX

Formulas for the calculation of the coefficients of the terms
involving the displacements in the equations of motion are presented

in [1). Those which depend only on the geometry of the submerged

volume are -
ZB= -eq Ay
Zeaﬁ = Q%Aw Xe

'L

vhere A" is the area of the equilibrium water plane, Xp is the
x-coordinate of the center of flotationm, - Q is the density of the
water, and Oy/ dx 1is the slope of the top "sides at the water
line "N(.pooit:ive for tumblehome). The remaining coefficients depend

on the location of the center of gravity as well as the geometry of

the submerged volume and are given by1

Ky=-a6M,
ﬁ =-AGM =-Q%IL+A5B
SR
& >
K Zg«kgbm-{%dx+%mh«
K .-261\ xb(x)—%t\x Q‘B‘NA\JX

_11_

g,

1 )
Several sign errors were made in the derivation of these formulas

in [1] which have now been corrected.



where IL is the moment of inertia o"f the equilibrium water plane
about the y-axis, zp is the z-coordinate of the center of buoyancy,
z, 18 the z-coordinate of the point where the z-axis cuts the equil-
ibrium water plane, and b(x) is the half breadth of the equilibrium
water plane.

For these computations we chose GMT to be 5% of the beam or
0.40". From the geomqtry of the submerged volume we found for this
model that M, - 1.51" and that the center of buoyancy was 1.46"
from the water plane. Thus

z, = 1.51" - (0.40" + 1.46") = -0.35" = -0.0292'
and

zy = -0.35" + 1.46" = 1.11" = 0.0925'

Now all that remains to evaluate these coefficients is to perform
the numerical integrations.
The heaving force and the rolling and pitching moments pro-

duced by the waves were calculated from the following formulas
- 9‘! '
2 = "AQ“} SJ.Z bix)-K S sk, x dX
TS Ay

L
(" [z bt~k steos k,x dx

‘Z-l‘ ‘Ae% Jp.!

L x
ﬁ.- AQ‘% S {x (2b00-k S(x))siw k\x—K\COsK,XQZ%%Al‘\ dx
-1, bw

— % \ I
= - ) K k\ wm. K 2 A dx
Mz. AQ%SQJXLZ\DM kSWOleos k x+Ks \\(x’wuﬁ ?b\
k1

&
R,\=Aeq K, S&g B - Sszwﬂét -3, sujess k, X dx

9~\ 3 2 .
EZ’ -AQ% kz.\g[?;gb’u\- &;\a%Ab- 'bwﬁlJJ]S\u.K,x dx



whers

S(x) = station area
kK = 2T/

A = wave amplitude

z, = vertical offset of
the base line

Kl = K cosol
K2 = K sinol

-54>
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